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Abstract

Antimicrobial resistance (AMR) is a serious concern
globally in human and animal health sectors and the
menace is percolating to the aquaculture too. Since the
aquaculture sector is at the receiving end of the
terrestrial run-off, the AMR detection strategy would
vary. Hence, AMR determination in the aquaculture
sector strategy needs triangular approaches viz.
pathogens of aquatic animals, commensal bacteria of
the aquaculture ponds and food safety pathogens in
harvested food fish. Farmed aquatic animals are being
transported as food material to distant places of intra,
inter-countries and continents. In this context, robust
surveillance of AMR in microflora associated with
farmed aquatic animals remains an essential tool for
identification and control of its spread.

Despite numerous reviews that have been published for
determining resistance in pathogens of clinical
importance, literature is scant on aquaculture and
seafood safety. The present review is oriented to
illustrate the different approaches possible for the
identification of AMR especially in the aquatic animal
pathogen, commensal bacteria and seafood pathogens
along with the molecular approach. The need of the
hour is rapid identification of resistance in the
surveillance platforms, thereby limiting the spread of
the resistance and improving food security.

Keyword: Antimicrobial resistance, Aquaculture, Seafood,
culture-independent method, Culture-dependent method,
Molecular approaches.

Introduction

Antibiotics are an important discovery of the 20" century
and still remain indispensable compounds in therapeutics of
human and animal health care systems*. However, in the
past two decades, there has been an alarming trend in the
increase of resistance to antimicrobials i.e. antimicrobial
resistance (AMR) in bacteria that is driving humanity
towards the pre-antibiotic era due to the evolution of
multidrug resistance (MDR), pan drug resistance (PDR) and
extensive drug resistance (XDR) bacteria'??, Further, the fact
that there was no new class of antibiotic discovery in the last
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three decades, has worsened the condition and favoured the
spread of AMR in the health sector and animal agriculture.

In the livestock and agriculture sector, fisheries contribute
immensely to nutritional and food security, both in terms of
domestic consumption and export. It has reached the status
of the most traded commodity of animal protein source
recently in 2018, valued at USD 164 billion and identified as
the major driver of economic growth!. To cater to the
requirements of food preferences and food demand of the
growing population, the fisheries sector has been rapidly
expanding towards intensive aquaculture practices with
limited space which leads to a potential increase in the
incidence of infectious diseases in farmed aquatic animals.
In many instances, aquaculture farmers are left without a
choice and forced to use antimicrobials to avoid crop loss
which also favours extensively the development of
antimicrobial resistance.

Though the consumption of antibiotics in the fisheries sector
is relatively meagre, it has been gradually rising to combat
infectious diseases or for prophylactic usel®!l. In
aquaculture, the global annual antimicrobial consumption
was determined as 10,259 tons in 2017 and is projected to
rise to 13,600 tons in 2030; with the Asia-Pacific region
accounting for 93.8% of the global consumption®,
Agquaculture requires special attention because it is at the
receiving end of all the run-off of across different sectors
(human, terrestrial animal and terrestrial environment)
which includes antibiotics.

Also unlike terrestrial animals, in aquaculture the animals
are in very close intimacy with the environment viz. water
and soil, thereby making individual therapeutic regimen
nearly impossible.

Antibiotic usage disrupts the environmental microbiota
associated with the pond; hence, it is inevitably facilitating
the development of antimicrobial resistance”®. The
development of AMR in commensal or pathogenic or
seafood safety bacteria may easily spread between each
other through horizontal or vertical gene transfer and also the
presence of antimicrobials in sub-therapeutic level
concentration®. After the completion of the aquaculture crop
period, the water is generally discharged to the adjoining
major aquatic body; hence, the possibility of spreading to
other aquatic environments is very high'’.
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Earlier, the studies were centred on clinical AMR pathogens
which have now expanded to the bacterial populations
associated with animals, foodborne, waterborne pathogens,
other environmental bacterial populations and since a
decade, in pathogens of aquaculture settings like
Aeromonads and Vibrios’®152158, Addressing the AMR in
aquaculture settings needs a triangular approach
encompassing pathogens of aquatic animals, commensal
bacteria of the pond, that should be linked to the pathogens
of the food fish. Special emphasis needs to be given to
bacteria unique to human and terrestrial sectors viz.
methicillin-resistant ~ Staphylococcus aureus (MRSA),
extended-spectrum B-lactamase (ESBL) Escherichia coli
and  Klebsiella  pneumoniae, Vancomycin-resistant
enterococci (VRE) and Vancomycin-resistant MRSA. In
depth understanding is essential to unlock the role of
commensal bacteria in the ecology of antimicrobial
resistance.

In the present review, the major focus is on bacteria
associated with aquaculture ponds relevant to aquatic
animal’s health (cultured in fresh and brackish water
environment) and methods available to determine resistance
and molecular approaches in deciphering the mechanism
behind the resistance. Emphasis was also laid on the mobile
genetic elements (MGEs) implicated in the transfer of
resistance. The aim is to provide a one-stop solution to the
researchers in the fisheries sector and riverine and reservoir
fisheries are dealt elsewhere.

One health in Antimicrobial resistance: World health
organization has defined one health as the approach of
designing and implementing program, policies and research
activity across all the sectors such as human and animal
health and environment. It envisages establishing a
coordinated multi-sectoral and inter-disciplinary approach
for containing the AMR. Public health, animal health, plant
health and the environment are the different stakeholders in
the one health approach working at the global, regional,
national and local levels!#%120.232 The aquaculture
environment is an important component of one health as it at
the receiving end of all terrestrial discharges and runs-off
and involves a complex system for AMR control.

Bacterial
settings

Aquatic pathogens: Aquaculture is one of the rapidly
growing food production sectors in the world; but the growth
of the sector is plagued by diseases of bacteria, viruses, fungi
and parasites, of which bacteria can survive well in the
aquatic environment independently without the hosts.
Moreover, bacterial diseases are a major impediment to
aquaculture especially in tropical countries. The important
Gram-negative bacteria reported to be pathogenic to finfish
and shellfish in the tropical region are: Vibrio alginolyticus,
Vibrio harveyi, Vibrio parahaemolyticus, Vibrio vulnificus,
Vibrio anguillarum, Photobacterium damselae, Aeromonas
hydrophila, Aeromonas sobria, Aeromonas caviae,

population associated with aquaculture
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Aeromonas veronii, Edwardsiella ictaluri, Edwardsiella
tarda, Pseudomonas fluorescens and Flavobacterium
columnare, while A. salmonicida and E. ictaluri are very
relevant in a temperate climate8.99.100.110,132,177,196,197

The Gram-positive bacteria that cause infections in fish and
shellfish include Mycobacterium marinum, Mycobacterium
fortuitum, Nocardia asteroides, Streptococcus iniae,
Streptococcus agalactiae, Lactococcus garviea,
Streptococcus parauberis, Aerococcus  viridans,
Renibacterium salmoninarum and in rare cases Pasteurella
piscicida,  Yersinia  ruckeri, or  Piscirickettsia
salmonis®70.187.1% - Necrotizing hepatopancreatitis (NHP),
caused by alpha-Proteobacteria and recently, acute
hepatopancreatic necrosis disease (AHPND) due to binary
toxin-producing V. parahaemolyticus have been the most
important bacterial diseases affecting shrimp farming in
recent yearst®%212, Moreover, every year new pathogens are
being added across the globe in the development of diseases
viz. Vibrio cholerae 0139, Serratia sp, Proteus sp.,
Pseudomonas sp., Lactococcus sp., Klebsiella sp. and many
more emerging*+8,

Commensal organisms: Bacterial isolates belonging to 15
genera were identified as commensal or opportunistic
pathogens in the aquaculture system viz. Bacillus sp.,
Psychrobacter sp., Plesiomonas sp., Aeromonas sp.,
Vagococcus sp., Enterobacter sp., Kurthia sp., Aerococcus
sp., Corynebacterium sp., Pseudoclavibacter sp.,
Lactobacillus sp., Kocuria sp., Enterococcus sp. and
Staphylococcus sp”®. Bacterial species such as A. hydrophila,
Corynebacterium sp., Corynebacterium urealyticum,
Edwardsiella sp., Micrococcus sp., Pantoea sp., Pasteurella
pneumotropica, Shewanella putrefaciens, Staphylococcus
sp., Streptococcus sp., Vibrio alginolyticus, V. cholerae, V.
vulnificus and Unidentified G—ve rods were also identified
as the commensal population in aquatic animals. Bacteria
such as Vibrio sp., Aeromonas hydrophila, Pseudomonas
fluorescens, Edwardsiella tarda and Myxobacteria are the
most common bacterial flora of the water, which are also
associated with the fish under ailing condition?0%213,

The potential role of commensals along with beneficial flora
to harbour transmissible resistance genes and their
vulnerability to acquire resistance generally cannot be
disregarded’®?4, A very important observation to note in the
bacterial populations associated with aquaculture and its
environment is the high frequency of Vibrio sp and
Aeromonas sp. in shellfish and finfish aquaculture settings.
They occur as commensal bacteria, aquatic animal
pathogens as well as human health hazard bacteria.

Hence, the possibility of gene transmission between these
two genera of bacteria is quite high. These antibiotic-
resistant genes are transferred to zoonotic pathogens either
through vertical or horizontal gene transfer mechanisms
mediated by mobile genetic elements®®12°, In this context,
the resistance genes present in the pathogenic flora or
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commensal flora across the sectors finally enter the aquatic
environment and can readily proliferate in the commensal
flora of the aquatic environment and are stable in the
commensal*>%%8! From one health perspective, important
bacteria for addressing the AMR in the aquaculture settings
are Vibrio sp. and Aeromonas sp. (Figure 1).

Seafood borne pathogens: The fish and fishery products are
documented with the contamination of several foodborne
pathogens namely Salmonella sp., Listeria monocytogenes,
Staphylococcus aureus, Clostridium botulinum, Shigella sp.,
V. cholerae, V. parahaemolyticus, V. mimicus, Yersinia

enterocolitica, Campylobacter jejuni and Escherichia
CO|i16’39'101'102'105'121'137'138'141'142'145’149’172'173’226.

Comprehensive approaches for determination of
antimicrobial resistance: Aquaculture farms consist of
aquatic animals and associated environment (water,
sediment) and the determination of AMR in aquaculture
settings is based on both culture-dependent and independent
approaches (Table 1). To decipher the role of various
microflora in the development of AMR in the complex
diversity of microbes in the environment, a single method
cannot serve the purpose and culture-dependent method
should be used along with one of the culture- independent
methods.

Emtarobacter sp,
Bacillus sp,
Kurthia sp,

Vagococcus sp,
Aerococcus sp,
Corynebacterium sp,
Ermterococcus 8p,
Pseudociavibacter,
Lactobacillus sp,
Kurthiz sp,
Kocuria sp
Staphylococcus sp.

Aquaculture Pathogens

Aeromornas hydrophila / Other
Aerormoads

Edwardsiella tarda / E. ictaluri
Plesiormonas shigelloides
Vibrio parahaemolyticus

Vibrio vuinificus
Vibrio mimicus
Vibrio alginolyticus
Flavobacterium columnarae
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Culture dependent approach: In this approach, live
bacterial isolates are recovered from the animal, water, or
environment and assessed for their antimicrobial resistance
profile. Direct assessment of antimicrobial resistance in the
aquaculture pathogens is the first and foremost approach for
infection control and treatment of aquatic animals.

Additionally, assessing the antimicrobial resistance in the
commensal and/or opportunistic pathogens is also the need
of the hour for aquatic animal health management. The
aquaculture produce is intended for human consumption
either in the domestic market or for export and hence, the
assessment of antimicrobial resistance needs to be extended
to aquatic food safety pathogens.

Once the bacteria are isolated and identified, there are
several methods available for the determination of AMR viz.
qualitative phenotypic method and qualitative genotypic
method and the same in quantitative methods either as
phenotypic or genotypic. The bacteria isolated from either of
the three culture based approach are subjected to disk
diffusion assay for measurement of zone of resistance with
the recommended antibiotics in qualitative phenotypic
method.

Seafood pathogens
Sa/momeliz sp (Typhoidal and Non-
Typhoidal)
Aerormonzs hydrophila
Vibrio cholerae
V. parahaemolyticus
Listeriz monocytogemes
Campylobactar jejumii
Staphylococcus aureus
Diarrheagenic E. coli

Figure 1: Bacteria of commensal, pathogenic and seafood-borne importance in aquaculture settings.
The blue circle denotes aquatic animal pathogens; the Green circle denotes human health hazard seafood pathogens; the
Orange circle denotes the commensal bacteria of aquaculture importance.
Vv: V. vulnificus, Vp: V. parahaemolyticus, Vm: V. mimicus, Va: V. alginolyticus; Vc: V. cholerae,
Ah: Aeromonas hydrophila, Av: A. veronii, As A. salmonicida, Ps: Plesiomonasshigelloides
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Table 1
Methods available for analyzing AMR in bacteria associated with aquaculture

Method Aquaculture Commensal Seafood safety bacteria

pathogen Bacteria (Includes Indicator
bacteria)

Culture- dependent method

(Prevalence or surveillance method; Diversity approach; Resistance population analysis screening method)

Phenotypic Method: Qualitative

1. Disk Diffusion assay + + +

2. Linear Gradient plating method _* + el

Phenotypic Quantitative method (MIC)

Broth dilution method + + +

Agar dilution method + + +

Culture-independent method

Genotypic Method

Metagenomic approach - + -

(Sequence-based) — NGS based

resistome

Microarray-based approach - + + +

Resistome

PCR based approach — Cloning + + +

and sanger sequencing

* Linear Gradient Plating method is not used in selective screening in aquaculture pathogen. ** Seafood safety pathogens viz. MRSA,
this method has been employed for selective isolation of the resistant population

In the quantitative phenotypic method, the level of
antibiotics was estimated using minimum inhibitory
concentration with agar or broth dilution methods and
recently Epsilometry paper strip based method. Automated
AMR identification systems are available for quick culture
based identification of AMR viz. sensititre (Thermofisher
Scientific), VITEK-2 (Biomerieux), Phoenix (BD) relies on
MIC integrated with the interpretation guidelines. The
culture-dependent approach may be combined with the
molecular tools used for culture-independent approaches
viz. microarray-based resistance genes profiling, whole
genome sequencing (WGS) based resistance profiling and
other gPCR and PCR based profiling.

Molecular methods viz. PCR, qPCR, microarray genotyping
and whole genome sequencing are also applicable to isolated
bacteria from culture dependent approach. Culture based
phenotypic qualitative and quantitative methods are
recommended for database development for guidelines
framework, selection of dosage and monitoring the
development of AMR.

Surveillance based approach: This is one of the culture
based approach. The surveillance-based approach for AMR
has two ways viz. active and passive surveillance. Active
surveillance or targeted surveillance is beleaguered on
desired bacterial pathogens of local/national/ regional or
global importance. Here, the samples are collected at a
regular interval in the population; but, the limitation of the
approach is both time-consuming and laborious'?®. The
passive surveillance is carried out on bacterial pathogens
isolated during a disease outbreak. In this, the etiology for

https://doi.org/10.25303/2011rjbt3680389

the disease outbreak is of varied reasons and hence, it is
relatively less time-consuming, but the bacterial pathogens
identified are diverse??,

A detailed stepwise guideline for setting the surveillance
program on aquatic animal diseases in aquaculture setting
can be integrated to both active and passive surveillance
program on AMR 2. Samples of target for this study are
gills, either internal of external lesions of the disease from
organs. Surveillance based approach is very essential for
drafting national policy framework for controlling the
antimicrobial resistance based on the pattern and trend over
a period of time. Guidelines should be followed for the
interpretation of data on antimicrobial resistance based on
standard described in figure 2. The studies conducted in
aquaculture farms based on passive surveillance are
described in table 2.

Diversity approach: In this approach, the total culturable
bacterial population of the farm is assessed i.e. heterotrophic
population of the pond. AMR pattern obtained in this culture
dependent approach reflects the current status of AMR in the
aquaculture pond. The selection of bacteriological media
and incubation conditions vary with the farming practices,
fish species and salinity of the water. Analyzing samples
from freshwater aquaculture requires the use of basal brain
heart infusion or trypticase soy agar or nutrient agar along
with one blood agar plate. Samples from brackish water
aquaculture require media supplemented with at least 1%
NaCl or artificial seawater media or Marine agar (Zobell
Marine agar) along with one blood agar plate. In this method,
commensal, aquatic pathogens, or seafood safety pathogens
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which are non-fastidious and heterotrophic nature will be
included.

The samples of the target are aquatic animals, animal gut,
water, sediment, feed including live feed, etc. which are
serially diluted ten-fold up to 6 or 7 dilutions.
Morphologically distinct bacterial populations will be
screened for antimicrobial resistance. The critical factor
involved in this approach is the selection of the antibiotic
panels for the bacterial population. In general, the antibiotics
are selected on the nature of the bacteria e.g. Gram-positive
or Gram-negative coccus or Bacillus. Interpreting guidelines
are based on the same principle, but can be taken from CLSI
guideline available for aquatic animals, terrestrial animals or
human clinical cut-off. This study is very much essential to
understand AMR status of the pond and deals with wide
variety of culturable bacteria. Studies that are carried out in
aquaculture farms based on diversity approach on
heterotrophic populations are depicted in table 2.

Resistant population approach: Once the selection of the
antibiotic is completed for the study, a modified agar dilution
method is carried out by employing the Minimum Inhibitory
Concentration (MIC) for all the antibiotics. The method is

Aquaculture
pathogens
Seafood Borne
pathogens
Shellfish /
Finfish

Gram Positive

|

Shellfish /
Finfish

|

Gram Positive
&
Negative

Follow CLSI 1

VetO3Ed2,
2020 &
CLSI VetO4Ed3,

Negative

Follow CLSI (M100,
2021; M02; M07,

2020 2018); Smith, 2020;
2021

Res. J. Biotech.

also known as the "Linear Gradient plating method" which
is employed to recover the organism which has received
MIC level of antibiotics in a particular environment!3113,
The gradient plating method is generally employed in a
culturable total bacterial population. However, it can be
adapted to both aquaculture and seafood borne pathogens
viz. Methicillin-Resistant Staphylococcus aureus (MRSA)
isolation 2ug/mL concentration of oxacillin are added
commonly and for isolation of Vancomycin-resistant S.
aureus (VRSA) 6ug/mL?2214,

These can be extrapolated to the aquaculture pathogens with
their pre-determined MIC values. Care is necessitated for
avoiding the bacterial cultures with known intrinsic
resistance for the particular antibiotic e.g. penicillin for
Gram-negative bacteria. This approach can be adapted for
the selective plating media combinations for the target
population or the entire non-fastidious population. Non-
selective enrichment media may be adapted based on the
salinity requirement. Resistant bacterial population
prevalence across the ecosystem of aquaculture and its
products has been reported?*,

Aguatic commensal
bacteria
Shellfish/
Finfish

Gram Positive
&
Negative

|

Mix of standard
documents
CLSI Vet04Ed3, 2020
& CLSI (M100, 2021;
MO02; M07, 2018);
Smith, 2020; 2021

Figure 2: AMR determination in triangular approach for aquaculture
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Culture dependent and independent methodologies employed for AMR in finfish and shrimp aquaculture
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S.N. Culture dependent

method

Culture independent method

Aquaculture farm type
and Country

Methodologies

Type of resistance

1 Resistance population - Freshwater salmon farm Phenotypic- Tetracycline,
approach/ Gram Chile DDA, amoxicillin,
negative, ampicillin.
oxytetracycline erythromycin,
resistant bacteria??® furazolidone,
florfenicol,
chloramphenicol,
cefotaxime and
trimethoprim-
sulfamethoxazole
2 Passive surveillance/ Tet gene, qacEDeltal, sull, Tilapia, trout and koi PCR, Tetracycline,
Aeromonas sp* ant(3")la, aac(6')la, dhfrl, oxa2a aquaculture system Phenotypic erythromycin
and psel South Africa nalidixic acid
resistance
3 Heterotrophic / - Farmed and wild caught Phenotypic, Ceftriaxone
Commensal and shrimp DDA tetracycline
Salmonella spp and South Carolina ampicillin
Vibrio vulnificus®® ceftriaxone,
gentamicin,
streptomycin,
trimethoprim
nalidixic acid
trimethoprim
4 Commensal / - Chilean freshwater Phenotypic Amoxicillin,
Pseudomonas salmon farms ampicillin,
fluorescens, Chile erythromycin,
Aeromonas furazolidone,
hydrophila, florfenicol,
Stenotrophomonas chloramphenicol,
maltophilial?® cefotaxime and
trimethoprim-
sulfamethoxazole
5 Resistant population floR Chilean freshwater Phenotypic Florfenicol,
method-Florfenicol salmon farms streptomycin,
resistant bacteria® Chile chloramphenicol
and
oxytetracycline.
6 Active surveillance/ - Shrimp farms Phenotypic - Ampicillin
Vibrio sp'®? Brazil MIC tetracycline
7 Active surveillance/ - Aquaculture (fish, Phenotypic — Sulfadiazine-
Photobacterium shellfish and DDA and MIC trimethoprim,
damsela ssp. crustaceans) Italian ampicillin,
piscicida, Vibrio carbenicillin,
fluvialis, Vibrio kanamycin,
alginolyticus, Vibrio cefalothin
parahaemolyticus,
Vibrio
metschnikoviil®*
8 Heterotrophic / ARGs —sull, sul2, tetM, tetO, Aquaculture farm — ARGs- gPCR Sulfonamide
Commensal tetT, tetWws° Commensal flora tetracycline
Bacillus China
9 Heterotrophic / tetA, tetG, dfrAl, dfrA5, dfrAl12, Chilean salmon DNA Tetracycline,
Commensal bacteria sull, sul2, blatem, StrA-strB, aquaculture hybridization sulfonamide, -
intl1, aad9 and intl21% Norway and PCR, lactamase
amplicon
sequencing
https://doi.org/10.25303/2011rjbt3680389 373
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10 - ARGs —sull, sul2, sul3, tetM, Aquaculture farms Metagenomics Sulfonamide,
tetO, tetQ, tetW, tetX, tetB/P, China (16s rDNA); tetracycline and
PMQR- gepA, ogxA, aac-16, ARGs -gPCR; quinolone
qnrs2® resistance detected
11 Active surveillance / - Farmed shrimp Ampicillin
V. Ecuador resistance and
parahaemolyticus?® intermediate
resistance to
tetracycline and
amikacin
12 Active surveillance/ ARGs- sull, tetA and intl1 Aquaculture farm- fish | Phenotypic and | Sulfonamide and
Aeromonas sp* — Culture method Silver PCR tetracycline
Carp resistance detected
Israel
(Hypophthalmichthys
molitrix)
13 Heterotrophic / ARGs- blaTEM, tetC, sull, aadA, Aquaculture farms PCR Aminoglycoside
Commensal floR and gnrB; intl, int2; Int-1 eels Sulfonamide
bacterial? associated with gacEA1/sull China. tetracycline,
gene; quinolone
14 cassette array detected resistances also
dfrB4-catB3-blaOXA-10-aadAl, detected.
dfrA12-orfF-aadA2
14 - tet(32), tetM, tetO, tetS, tetW, Fish farms gPCR Tetracycline
tetA, tetE, tetG, tetH, sul2, dfrA1, Finland metagenomics Sulfonamide
aadA, aadAl, aadA2, strB, tnpA, — Bacterial Aminoglycosides
qacEAI, mexF, oprD, oprJ, diversity Beta-lactam
pncA, yecL, blaOXY, blaCTX, resistance
blaSHV, acrA, vanC, aacC** Transposons
Efflux pump
mechanism
15 - sull, dfrAl, tet(32), tetM, tetO, Fish Farm WaferGen Tetracycline
tetW, aadAl, aadA2, catA, emrB, Finland gPCR array Sulfonamide
matA, mefd, msrAe intll, qacEA, Metagenomics- Trimethoprim
tnpA8! bacterial Chloramphenicol
diversity Macrolides
Integron and
transposons
16 - tetA, tetB, tetD, tetE, tetG, tetH, Fish farm & effluents Metagenomics Tetracycline
tetM, tetQ, tetX, tetZ, sull and South Korea. (16s rDNA); Sulfonamide
Int118 ARGs -gPCR; Integron
17 - floR, sulll, sull, strB, strA, aadA, Aquaculture farms Metagenomics Florfenicol,
tetS and tetS™ China (165 rDNA); Sulfonamide
ARGs -qPCR; Aminoglycoside
Tetracyclines
18 Diversity/ Fish gut ARGs to florfenicol and Chilean freshwater Phenotypic, Florfenicol
microbiota oxytetracycline also detected’ salmon farms Resistance oxytetracycline
Chile population
approach and
PCR.
19 - sull, sul2, sul3, tetA, tetM, tetT, Integrated polyculture Metagenomics Tetracycline,
tetW, aac(6")-Ib, floR, gnrB, aquaculture farm (16s rDNA); sulphonamides,
gnrA, gnrs, fexA, fexB, China ARGs -qPCR; quinolones,
gepA, blasmy, cmlA, cfr4 shotgun chloramphenicol
sequencing - and B-lactamases
Resistomes
20 Heterotrophic / gyrB mutations®3 Chilean salmon farms PCR, Flumequine,
Commensal Chile Phenotypic florfenicol and

(Pseudomonas sp)

oxytetracycline

https://doi.org/10.25303/2011rjbt3680389
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21 Heterotrophic / sull, sul2, sul3, intl1, int2, Chilean salmon farming PCR, Florfenicol,
Commensal dfrAl, dfrA12 and dfrA14% Chile phenotypic, erythromycin,
(Pseudomonas sp) Resistance furazolidone,
population amoxicillin,
approach sulfisoxazole and
trimethoprim.
22 Active surveillance / | Oxazolidinone/phenicol-resistant Salmon fish Phenotypic, Florfenicol
Columnaris diseases gene optrA24 China metagenome, linezolid and
resistome chloramphenicol
analysis
23 - ARGs- Sull, sul2, dfrA1, tetA, Aquaculture farms — Metagenomics Tetracycline
blatewm, Int-1 Silver carp (16s rDNA); sulfonamides
Sulfonamide and tetracycline Israel ARGs -gPCR; B-lactamase
resistant genes*>® shotgun
sequencing -
Resistomes
24 - sull, sul2, floR, strA and gyrA®° | shrimp hepatopancreas gPCR Sulfonamide
China Quinolones
25 Active surveillance / - Oreochromis Ampicillin
V. niloticus (tilapia), Labeo amoxicillin
parahaemolyticus'®® rohita (rui) and Penaeus cefotaxime
monodon (shrimp) ceftriaxone
Bangladesh
26 Heterotrophic / - common carp Metagenome; Tetracycline
Commensal'®® Lithuania Phenotypic

This method is very useful for determination of resistant
population among the heterotrophic population in the
aquaculture ponds, which in turn, will be useful for the
selection of antibiotics for therapeutic purpose or in-directly
to interpret the usage of antimicrobials in the ponds.
Resistance  population  approach on tetracycline,
sulfonamide and florfenicol resistance carried out
aquaculture ponds are depicted in table 2.

Culture-independent approach: The advancement in
metagenomics helped in unravelling the role of the
microbiome in a complex environment??4, The culture-
independent approach provides valuable information on the
abundant diversity of the microbial populations that are non-
culturable but play a vital role in the particular niche. The
commonly used culture-independent approach is the
detection of antimicrobial resistance genes (ARGSs) by
collecting the environment sample of gut micro-flora or
sediment or water and these directly extracted meta-DNA
from the sample are processed for the presence of ARGs.
Determination of ARGs using a culture-independent
approach from this meta-DNA can be assessed by PCR,
PCR-cloning approach, qPCR approach, a meta-genomic
approach  using  next-generation  sequencing  and
microarrays.

PCR based AMR determination: PCR-based assays are
simple and are being used in most of laboratories to detect
the ARGs. Single or multi-plex PCR assays were developed
to detect ARGs such as ESBL, CRE, aminoglycosides,
chloramphenicol, quinolones or macrolides®’:51:78.133.147,148,
151,157,167,168,169,211,220,227,234,235_ HOWEVEF, new resistance
determinants are being discovered every year with variations

https://doi.org/10.25303/2011rjbt3680389

in the mechanism within the classes of resistance and to date
over 923 ARG sequences have been reported 8 1%, The
method is highly encouraging on targeted list of ARGs from
the meta-DNA or bacteria isolated from aquatic
environment. However, the method becomes cumbersome
for screening an array of ARGs which limits its usage in
environmental DNA. Relatively easier to start and cost
effective, but time constraint and positive control DNA are
required for each confirmative step. Studies carried out in
aquaculture ponds based on PCR confirmation of ARGs are
depicted in table 2.

In PCR cloning approach, the target genes were amplified,
cloned and sequenced based on the Sanger sequencing
method. This approach also has same advantages and
limitation like conventional PCR based method. This
method is time-consuming and costly in terms of
optimization, however, it is confirmatory as it involves
sequencing. Real-time/qPCR-based approach with the target
genes with probes or sans probes method is used for the
quantification of copy numbers of ARGs in the sample and
has various other applications such as spatio-temporal and
time series changes in ARGs.

This method has the advantage of no requirement of positive
control in probe based assessment, however, has the
limitation in terms of the cost involved for processing the
sample, establishment of infrastructure and for analyzing
each gene. Studies carried out in aquaculture farms based on
gPCR are depicted in table 2. Generally, qPCR studies are
used for estimation of the abundance of ARGs, temporal-
spatial variations in the ARGs, detection of ARGs, time
series degradation of ARGs, comparison of ARGs diversity
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between antibiotics treated/untreated ponds and between
organs and so on. Several revisions were made in gPCR
platforms with 96 wells to 384 wells for detecting over 50
ARGs and since 2016 it has been expanded to over 295/360
as array of genes of ARGs. Recently a smart chip was
developed which can perform over 5000 reactions in an
array for which ARGs were developed and are used in
aquaculture ponds'#°, The same PCR-based method can be
adapted for any cultured population of bacteria from
aquaculture pond water, sediment and animal.

Microarray-based AMR determination: The second
culture-independent method is the microarray-based
genotyping of resistome. This approach can be used for
genotyping of single culture with array of resistant genes or
from the meta-genome. This approach is very rapid and the
cost per sample of DNA is relatively low. Microarray slides
are available as default or customized platforms. In 2005, 90
genes were customized on DNA  microarrays®6.
Aminoglycosides (64 types), penicillin beta-lactamases (50
types), other -lactamases (17 types), amphenicols (40 types),
trimethoprim (22 types),  macrolide-lincosamide-
streptogramin (MLSB) (52 types), sulfonamides (3 types)
and tetracyclines (40 types) were identified using a
personalised microarray developed by Roche NimbleGen!18,

Microarray based analysis also has wide applications viz.
time trend, spatio-temporal assessment, however, the
limitation of this method is infrastructure requirement for
microarray scanner and analysing softwore for more targets,
dependency of microarray slides developed for ARGs. The
method has the possibility of expanding up to 2000 odd
genes in a single run and also quantification.

Sequencing based AMR determination: The diversity
analysis for taxonomic assessments was initially carried out
by PCR-cloning and sequencing-based approach wherein
the targeted resistant genes were selectively amplified,
cloned and sequenced as amplicon sequencing. The
limitation of this method for specific primer requirements for
the large variety of resistant genes was overcome by whole
metagenome analysis®2. A recent breakthrough in
sequencing strategies is the next-generation sequencer with
advanced resistome analysis using meta-genomic data. Here,
the meta-genome extracted from the sediment or animal gut
microbiota is readily sequenced for the determination of the
diversity of resistance genes as well as microbiome/
diversity/bacterial community structure.

In contrast to the microbial community’s analysis using
culture-dependent methods, metagenome analysis using
high throughput sequencing-based analysis offers a detailed
community structure that includes dominant flora as well as
the diversity flora (HTS) and the data can be statistically
compared between the samples. Even though, this method
offers the better understanding on the resistome targeted as
well as emerging or novel ARGs. The biggest limitation of
this method is involvement of millions of dollars for the
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establishment of the infrastructure and comparative analysis/
storing of data requires expertise and space. There is a
considerable reduction in the analysis charge in the last
decade and establishment of numerous private laboratories
for outsourcing the analysis may outcompete the limitation
soon.

Fifty-eight resistant genes for 11 antibiotics in aquaculture
sediments were determined using the metagenomic
method?*!. Location of the majority of these resistance genes
was identified on Mobile Genetic Elements (MGE) viz.
transposons and plasmids of human pathogens attributing to
the mobility of the resistance genes?. Further research is
needed to establish the direction of resistance transmission
whether it is from an aquatic environment to humans or vice
versab’ 223,

Beneficial bacteria bear transmissible ARGs and the
resistance has been observed in them as well 50 228,
Metagenomics is a valuable method for figuring out the
intricate processes at work in the host-environment
relationship. AMR bacteria and ARGs are studied using both
targeted (culture-based and quantitative PCR) and non-
targeted methods  (metagenomics)?424,  However,
depending on the environment, only around 1-10% of
bacteria can be cultivated®®. As a result, using a
combination of culture-based approaches and a culture-
independent approach to investigate the environmental
resistome may be the most effective tool69107:171.242,

ARGs are primarily located on plasmids and
integrons®27,56:89,163-165 ° A combination of the metagenomics
and meta-transcriptomic analyses may unravel the active
population carrying these resistance genes in the
environment and may provide evidence for the hypothesis
that the presence of antibiotics at sub-MIC concentration
favours the development of resistance in the environment!*®,
Detailed investigations on efflux pump mediated resistance
and enzymatic degradation of antibiotics in individual
bacteria of human health importance are available
elsewhere'%.2%, Forty-four environmental samples from two
monoculture freshwater aquaculture farms and four
integrated farms (two duck and fish farms, two laying duck
and fish farms) in Guangdong, were China, analyzed using
high-throughput  sequencing-based metagenomics and
network analyses revealed that relative abundance of ARG
and MGE subtypes in the integrated (fish and duck/laying
duck) farm samples was significantly higher than those in
samples from monoculture freshwater aquaculture farms. In
particular, integrated farms had higher overall relative
abundance of both mobile colistin resistance genes mcr
variants and tigecycline resistance gene tetX variants than
monoculture farms?%,

The effect of feed-administered antibiotics on the
composition and metabolic ability of the gut microbiome in
the European seabass was studied using quantitative PCR (to
calculate bacterial copy numbers and amplicon sequencing
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of the 16S rRNA gene). Antibiotics had a different effect
around the gut, demonstrating distinct impacts on these
microbial niches. Despite the antibiotic intake, a large
portion of the European seabass gut microbiome remained,
suggesting high stability to perturbations®®. Using a
metagenomic approach, Piaractus mesopotamicus was used
as a model to assess the impact of the antimicrobial
florfenicol on the diversity of the gut microbiome, as well as
ARGs and MGEs and it was discovered that ARGs and
MGEs significantly increased during antibiotic exposure and
that the pathogen profile in the fish's gut shifted**.

The possible transmission of ARGs between Acinetobacter
baumanii to Klebsiella and Pseudomonas was established
and the requirement of framework on resistome based global
epidemiology was indicated 7. Functional metagenomics is
a recent approach that has the advancement of determining
unknown antibiotic-resistant genes in the environments
having the ability to unravel thousands of resistances genes
that have a similarity of more than 65% to the existing
database5412°,

Many platforms are now available for analyzing antitbiotic
resistance genes and one such platform is Antibiotic
Resistance Genes Database (ARDB)4.  Other tools and
software available for the determination of antimicrobial
resistance from sequencing analysis data are sraX,
ResistoXplorer, MEGARes, SARG, DeepARG, PRAP: Pan
Resistome analysis pipeline®*3. These tools offer a resistome
diversity analysis from a variety of sequence data output.

Considering the importance that the majority of the
aquaculture ponds and or animals and its environment have
been identified with tetracycline and sulfonamides as a
major resistant determinant along with minor variations in
the class of the antimicrobial resistance genes identified as
depicted in table 2, any study concentrating in the
aquaculture farms and their environment should focus on
resistant determinants for tetracycline, sulfonamides,
aminoglycoside, quinolones, macrolides and p-lactams
antibiotics. In particular, the studies concentrated on finfish
aquaculture should look for tetracycline, sulfonamides and
florfenicol resistances.

Molecular mechanism of antimicrobial resistance:
Resistance to antimicrobial agents in the bacterial population
is an evolving response to protect themselves from killing or
inhibition. The main mechanisms of action of antibiotics in
bacteria are inhibition of cell wall synthesis, protein
synthesis, DNA synthesis and metabolic pathways.

In general, resistance to antimicrobials in bacteria arises out
of three major mechanisms i.e. preventing the entry of the
antibiotics to the bacterial cell, efflux the entered drug
outside of the bacterial cell by pump mechanism and directly
acting on the antimicrobial compounds either by degradation
or modification of cell membrane for permeability by
mutation and thereby making them inactive to the target'®.
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These resistance mechanisms in bacteria may be
intrinsic/natural or due to acquiring resistant genetic
materials by horizontal or vertical transmission.

Intrinsic resistance refers to the inherent properties of a
microorganism that limit the action of antimicrobials e.g. the
permeability barrier of the outer membrane (OM) and
constitutively expressed drug efflux pumps®. Intrinsic
resistance arises due to the presence of resistant genes in
chromosome, however, in acquired resistances, the genetic
material for resistance is transferred through different
mobile genetic elements such as plasmids, phages,
transposons and others like integrons, insertion sequences
between species of genera and at a lower frequency between
different genera®. In general, Gram-negative bacteria are
more intrinsically resistant than Gram-positive due to the
presence of outer membrane, lipopolysaccharide (LPS) and
modified lipo-oligosaccharide (LOS).

Because of their hydrophobic nature which prevents
macrolides from entering their outer membranes, Gram-
negative bacteria are naturally immune to them. Anaerobic
bacteria are naturally immune to aminoglycosides because
the transfer of aminoglycosides into the cell requires energy
from oxidative metabolism, which these bacteria lack.

In general, the resistance of Gram-negative bacteria was
common for tetracycline, aminoglycosides and
cotrimoxazole; and recently towards the B-lactams and
fluoroquinolones®®’. However, in the Gram-positive
bacteria, the resistance to [B-lactams is very minimal
compared to the Gram-negatives where the ESBL and CRE
are increasing globally.

There is a knowledge gap regarding the prevalence of
antimicrobial-resistant bacteria in various aquaculture
settings, AMR in the fish value chain, the transmission of
resistance between aquaculture bacteria and clinically
relevant bacteria under field conditions and the
epidemiology of AMR in different countries' intensive
aquaculture zones'!. Even the integrated aquaculture

systems are reported to be reservoirs for AMR
genes73,143,153,161.

Molecular targets for cell wall synthesis resistance: -
Lactam antibiotics and glycopeptide are bacterial cell wall
synthesis inhibitors which typically exert their action on the
peptidoglycan layer*®. The enzymatic degradation is very
common in Gram-negative bacteria and the modification of
PBP is more common in Gram-positive cocci®. p-
lactamases has been characterized into 4 molecular classes
(C, A, D and B and their sub-classes)?*-26.176.184_Screening of
B-lactamases, extended-spectrum  B-lactamases  and
carbapenemases producers in both Gram-positive and
negative bacteria is performed by disk diffusion assay using
penicillin, cefoxitin, cephalosporins, extended-spectrum
cephalosporins, monobactams and carbapenem discs along
with clavulanic acid, EDTA, tazobactam and boronic acid.
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This is further confirmed by performing a double-disk
synergy assay and quantifying the MIC for ceftazidime and
cefotaxime with and without clavulanic acid. Carbapenem
resistance is confirmed by performing MIC with
carbapenems as per CLSI or EUCAST guidelines (CLSI
M100 document in comparison to M2 and M7 for
performing DDA and MIC and interpretation). The
antimicrobial resistance in Enterobacteriaceae in gold fish
was reported without ciprofloxacin resistance!’.

Among the glycopeptide antibiotics, only vancomycin and
teicoplanin are used in the treatment of Gram-positive
infections. The glycopeptide antibiotics bind to d-alanyl-d-
alanine (d-Ala—d-Ala) cell wall peptidoglycan precursors
and inhibit cell wall synthesis®. Genes for glycopeptide
resistance are present either in the plasmids or on the
chromosome. For detection of vancomycin resistance, only
MIC method is recommended, however, for teicoplanin both
DDA and MIC are in rule.

Molecular targets for protein synthesis resistance:
Antibiotics target the prokaryotic ribosome and interfere
with protein synthesis. The 30S ribosomal subunit that
monitors the correct base pairing between the mRNA codon
and the anticodon of the aa-tRNA is the target for
tetracyclines and aminoglycosides whereas macrolides,
lincosamides, oxazolidinones and streptogramins exert their
action on the 50S ribosomal subunit*!,

Resistance to amino-glycosides is mediated by four
mechanisms!23.166,198,210.221,240, More than 300
Aminoglycoside-modifying enzymes (AMES) are involved
in modification of aminoglycosides at amino or hydroxyl
groups, thereby reducing their binding activity at the
ribosome. These enzymes are categorized into AG N-
acetyltransferases, AG O-nucleotidyl transferases, AG O-
phospho transferases and are highly mobile through
MGEs'81°,  The next group is the Ribosomal
methyltransferases (RMTases)36:46:58,

Bacteria acquire tetracycline resistance by way of acquiring
genes responsible for tetracycline-specific efflux pump,
ribosome protection protein and tetracycline degrading
enzymes. The protein responsible for ribosome protections
dislodges tetracyclines from the binding site. Several tet
genes were reported in tetracycline-resistant bacteria
isolated from Chilean salmon, fish farms in Korea, cultured
yellowtail in Japan, Danish fish farms, Vietnam catfish
farms, fish farms in Thailand, fish farms in
China349:60.88,91,130,146207 * ClJassl integrons harbouring
resistance gene cassettes ant(3 ”)la, aac(6”)la, dhfrl, oxa2a,
and/or psel and tet genes were detected in Aeromonas sp
isolated from fish farms®.

The Macrolide — Lincosamide — Streptogramin and Ketolide
(MLSgK) antibiotics have a shared binding position in the
50S unit of the prokaryotic ribosome; hence the resistance
developed against any one of the antibiotics quickly confers
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cross-resistance to others. MLSB resistance occurs due to 3
mechanisms viz. enzymatic modification, efflux pump and
enzymatic degradation®%®, Based on the sequences upstream
to erm genes, they are constitutive or inducible by
erythromycin in  nature®. Another form of cfr
methyltransferase mediated methylation in 23S rRNA
produces a broad spectrum of resistance to phenicols,
lincosamides and oxazolidinones. Over 38 erm genes were
identified®”-2%,

Chloramphenicol inhibits protein synthesis by binding to
peptidyl transferase of the 50S ribosomal subunit of 70S
ribosomes of bacterial®. Hence, resistance occurs by
enzymatic inactivation, efflux pump systems, resistance to
permeability of the drug and mutation of the target
site’821136 - floR gene was detected in tetracycline-resistant
bacteria isolated from aquaculture farms in Asia and fish
farms in Africa®®°, Plasmid-mediated florfenicol resistance
was reported in bacteria isolated from salmon fish farms and
catfish®6.231,

Molecular targets for Folate pathway resistance:
Antimicrobials sulfonamide and trimethoprim interfere in
the folate pathway and hence, resistance to sulfonamide
occurs due to mutations in the enzyme and acquiring
alternative genes of DHPS resulting in low-affinity for
suIfonamide390'159'181'2°1'2°2'233.

Molecular targets for Nucleic acid synthesis: Quinolone
resistance occurs by different mechanisms mostly encoded
within mobile genetic elements and to a lesser extent within
chromosome viz. mutation in target site topoisomerase II,
altered expression of porins, efflux pump and target
protection’’. The major resistance mechanisms identified in
Gram-negative and positive bacterial species were gyrA,
grlA, gyrB, parC, gnr alleles, gepA, oxgAB, aac(60)lb-cr
4)52,83116162.183237 and were reported in bacteria from
aquaculture’76.243,

Rifampicin or rifampin is the antibiotic that acts on RNA
synthesis and its resistance has been reported in
Mycobacterium tuberculosis, E. coli and S. aureus due to
mutation in the RNA polymerase and hence the reduction in
the binding ability of the antibiotic 8 200 247 Efflux of
antibiotics by the bacteria is mediated mainly by 5
transporters or efflux pumps viz. Major Facilitator
superfamily (MFS), Small Multidrug Resistance (MDR)
family, ATP-Binding Cassette superfamily (ABC),
Resistance-Nodulation-Cell Division superfamily (RND)
and multidrug and Toxic Compound Extrusion family
(MATE)8, These efflux pump systems are not only used for
the effluxing of anti-bacterial but are also involved in other
functions viz. the influx of ions and nutrients, effluxing of
metabolic end-products and toxic compounds and
communication between cells and the environment. The
transporters ATP and MFS are large family single-
component transporters across the cytoplasmic membrane /
inner membrane.
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The MATE, SMR and RND are very small family
transporters or multi-component transport across the
cytoplasmic membrane, outer membrane channel protein
and periplasmic fusion proteins. In general, Gram-negative
bacteria are inherently more resistant to antibiotics due to the
presence of outer membrane barrier and possession of broad-
specificity multidrug efflux pumps#4.

MATE - BexA, NorM, YdhE, VcmA, MepA -
fluoroguinolones, polymixins, kanamycin and streptomycin
(Aminoglycosides and Fluoroquinolones);

MFS — BcrA, EmrAB-TolC, EmrKY-TolC, EmrD, Dep,
MdfA/Cmr/CmlA, SmvA-OmpD, YddG-OmpD, VceAB,
NorA, QacA/QacB, Bmr and BIt, LmrP - nalidixic acid,
tetracyclines, thiolactomycin, bicyclomycin,
chloramphenicol, puromycin, rifamycin;

ABC - MacAB-TolC, LmrA pumps - macrolides; MDR
transporters -EbrAB, QacC/Smr, SepA, EmrE, SugE, TehAB
- disinfectants and antiseptics; and RND transporter -
AcrAB-TolC, FarE, MexAB-OprM systems - p-lactams,
aminoglycosides, chloramphenicols,  fluoroquinolones,
tetracyclines, sulfonamides and others?3.93.134,170.188,191,245

The outer membrane porins in Gram-negative bacteria
favour the passage of hydrophilic antibiotics into the bacteria
and are very specific to a group of bacteria (OmpF, OmpC,
OprP, OmpF and OmpE). Loss or modification in the porins
facilitates the resistance to antibiotics called “porin mediated
resistance” viz. OprD in P. aeruginosa to imipenem/
meropenem; OmpF for multidrug-resistance® 5117,

Mobile Genetic Elements (MGE) in resistance
development: A segment of DNA which encodes for
proteins mediating the transfer of DNA intracellularly within
the genome and intercellular between bacterial cells along
with the enzymes are known as “Mobile genetic elements
(MGEs)"®®. The transfer of DNA between bacterial cells
occurs in three forms in prokaryotes viz. transduction,
conjugation and transformation whereas the transfer or
mobility of the DNA within the cell happens by transposons,
which randomly recombine or ‘jump’ between replicons and
also ‘hop’onto phages or plasmids. When the transfer
happens onto the phage DNA or plasmid, then once again
the probability of intercellular mechanism of transfer arises.
MGE has transposases and site-specific recombinases which
involve in catalyzing within the cell movement of MGEs
which favors the homologous recombination in the host
genome and also deletion or insertion  or
rearrangements?106.154,

Integrons is a fragment of DNA with an integrase gene (intl)
and a proximal primary recombination site (attl). Based on
the amino acid variation, the intl gene is classified as intl1,
intl2, intl3 and intl4. The intl favours or catalyzes the
recombination of the genes between attl and attC sites.
These carry the resistance genes for antibiotics, antiseptics
and disinfectants. Tn21 type integron were highly linked to
sull gene-mediated resistance, however, the sul2 mediated
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resistance was by small plasmids of the IncQ family
(RSF1010) and also on plasmids of another type represented
by pBP12%2, The possible role of class I integrons (Tn21-like
transposons) in the spread of the antimicrobial resistance
through food was established and the aquatic food products
mostly from aquatic environment role generally cannot be
disregarded®?.

Soil integron / cassette richness was elaborated in diversity
study in Australia, over 4000 cassettes were estimated®. The
role of integrons in the transmission of resistance as well as
virulence and their possible benefits of using as
biotechnological tools were elucidated®?.

Guidelines to be followed for phenotypic determination
of AMR: AMR determination in aquaculture settings by
susceptibility testing was being carried out since 1990’s.
However, there exists a huge variation in the employment of
standard operating procedure in determination of AMR %7,
Shortcomings need to be avoided due to the adverse impact
of antimicrobial resistance in terrestrial and aquatic animal
pathogens!®203.217 No significant variation was occurring in
susceptibility testing measurements for V. vulnificus and V.
anguillarum at 24-28h and 44-48h as a result of inter-
laboratory validation®>. The steps involved in the
harmonization of procedure by CLSI are elaborative 2%°,
Approaching AMR in aquaculture settings is a triangular
approach which can be addressed as per figure 2.

CLSI Vet04Ed3, 2020 deals with the aquatic animal
pathogens such as Aeromonas salmonicida, Aeromonas
hydrophila, Flavobacterium columnare, Flavobacterium
psychrophilum. Other pathogens viz. Vibrio sp.,
Photobacterium damselae, Gliding bacteria, Streptococci
and other few fastidious bacteria shall be taken from CLSI,
Vet03A, 2006 and commensal flora can be adapted either
from CLSI M100, M02, M07 and CLSI M45 for the
infrequently isolated or fastidious pathogens CLSI Vet04A,
2006.

The recent interpretation guideline is based on Normalized
Resistance Interpretation based on disk diffusion or
minimum inhibitory concentration for the determination of
epidemiological cut-off for the environmental bacteria
which is more appropriate instead of using the Clinical
standard breakpoints based on hospital pahogens®-%,
Increasing the data on these epidemiological cut-off for the
environmental bacteria will accumulate useful data on
bringing guideline separately on epidemiological cut-off
value.

To improve the quality of the AMR data from the
aquaculture settings and the reproducibility of the data
across the laboratories, certain guiding principles were
proposed®:32203, The following points are necessary:
adherence to the standard protocol (SOP); uniformity of
interpretative criteria followed for particular group or
species of bacteria to avoid ambiguity in the data generated:;
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compulsory use of quality control strains, strict adherence to
incubation time and temperature; data generation of
epidemiological cut-off values for aquatic animal pathogens
from local laboratories across the globe for arriving at a
consensus epidemiological cut-off distinguishing wild type
from non-wild type bacteria; appropriate use of
terminologies; sharing raw data of the antibiotic
susceptibility test in the public domain for easy comparison
and arrival of breakpoints for aquatic animal pathogens and
interpretation using non-clinical breakpoints

Trends in the determination of antimicrobial resistance
across the sector: The first detection of AMR in the human
health sector was in the 1940's after penicillin and
sulfonamide release into the therapy*®. Likewise, the first
detection of AMR in food animals was reported in the 1950's
for streptomycin and tetracyclines in Turkey?20,

In aquaculture settings and environment, the first detection
of AMR was in the 1980's*8. The infrastructure required for
the determination of AMR in the human health sector was
more significant compared to the terrestrial and aquatic
animal food production sectors.

Recently, more attention has been given to animal, food and
environment as an important component of the development
of antimicrobial resistance and in the next decade due to the
advancement of testing infrastructure in these sectors may
show more detection rate of antimicrobial resistance that has
the potential to surpass the human health sector due to the
increase in the projected use of antibiotics in terrestrial food-
producing animals (174,549 tons) and aquaculture (13,600
tons) by 2030. Detailed informations on AMR in each
sectors including fisheries, environment, food and molecular
fingerprinting strategies and individual organism wise AMR

informations may be sought
e|SEWherelz’103’135’175'180'189'215'216'218'219.

Conclusion

There is increasing evidence of AMR emergence in the
aquatic environment that includes aquaculture and thereby
acts as a sink or mixing vessel for further transmission to the
human or animal health or food chain. Hence, foregoing the
aquatic environment in tackling the AMR menace is not
appropriate. AMR surveillance in aquaculture has to be
approached using a triangular strategy focusing on
commensal flora, aquatic animal pathogens and human
pathogens. Molecular tools remain very indispensable tools
for understanding such a complex system, but should always
be used in tandem with the conventional population-based
approach, thereby deciphering the real-time picture of
antimicrobial resistance.

However, understanding the direction of transmission of
resistance between populations of bacteria in the
environment can only be possible after establishing the real-
time measurements over some time. In the coming year,
advancement in the sequencing tools will provide a very
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fine-tuned picture to devise and adapt better AMR control
strategies. This is very important in meeting the food and
nutritional security needs of the increasing population and
also for a healthy environment.
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